foto1
foto1
foto1
foto1
foto1

Добыча нефти и газа

Изучаем тонкости нефтегазового дела ВМЕСТЕ!

Модели фильтрационного течения, флюидов и коллекторов

Теория фильтрации  строится  на  представлении породы и заполняющего ее флюида сплошной средой. Это означает, что элементы системы флюид - порода считаются физически бесконечно малыми,  но достаточно большими по сравнению с размерами пустот и зерен породы.  При этом предполагается, что в одном и том же элементарном объеме содержатся одновременно порода и флюид.

Известно, что в механике сплошных сред течение жидкостей и газов описывается тремя законами сохранения: массы, количества  движения и энергии. При исследовании фильтрационного течения в подземной гидромеханике используются только первые два уравнения, а изменением температуры флюида пренебрегается по причине малых скоростей течения и значительного теплообмена со скелетом пород, вследствие значительной поверхности контакта, которые практически не меняют своей температуры из-за большой своей теплоёмкости. Таким образом, процесс течения предполагается изотермическим. Необходимо отметить, что в отдельных случаях (тщательное изучение призабойной зоны, использование термических методов интенсификации добычи флюидов) используют и общую постановку - с учётом изменения температуры не только флюида, но и породы.

Для процессов, происходящих в нефтегазовых пластах при разработке, характерно наличие периодов изменения параметров течения во времени (пуск и остановка скважин, проведение работ по интенсификации притока). Такие процессы называют неустановившимися (нестационарными), а сами модели течения нестационарными. Те же модели, которые описывают процессы не зависящими от времени, называют стационарными (установившимися). При этом в данных моделях, по причине малости изменения скорости и значительного преобладания сил сопротивления над инерционными, уравнение количества движения используется не зависящим от времени  и пренебрегается изменением  импульса по пространству.

Моделирование фильтрационного течения по отношению к пространственному изменению параметров может проводиться в одномерной, плоской и пространственной постановках. Одномерная постановка рассматривается в том случае,  когда параметры являются функцией только одной переменной - это течение по прямой или кривой.

По степени сжимаемости. Так природный газ способен значительно изменять свой объём при изменении давления, вода и нефть в довольно значительном диапазоне давлений (приблизительно до 20МПа) практически несжимаемы, а при высоких давлениях обладают упругими свойствами. В связи с указанными факторами различают модели сжимаемой, несжимаемой и упругой среды. Построение каждой из указанной модели  требует привлечения эмпирических уравнений состояния - соотношений, связывающих изменение объёма с изменением давления.

По количеству фаз.В области контакта флюидов при вытеснении одного другим или при выделении одного флюида из другого в каждом микрообъёме содержится два или больше флюидов, занимающих отдельные четко различимые объёмы (пузырьки газа в жидкости, капли или плёнки в газе) и взаимодействующих на поверхностях раздела. Такие системы называют многофазными (двух, трёх и т.д.) в отличие от многокомпонентных смесей (природный газ, нефть), в которых взаимодействие происходит на молекулярном уровне и поверхности раздела выделить нельзя. В гидродинамике такие среды называют однофазными или гомогенными.

По деформируемости. В процессе движения флюиды испытывают различные деформации (сжатие, кручение, растяжение и т.д.) при изменении нагрузки (трение соседних объёмов, внешние силы), которая, отнесённая к единице площади, получила название напряжения. Само соотношение, связывающее деформацию или скорость изменения деформации с напряжением, называется реологическим соотношением или законом.  Наиболее часто, применительно к жидкостям, для описания действия касательных напряжений txy  на сдвиговую деформацию применяют соотношение Ньютона , где ux - скорость в направлении  х; у - направление, перпендикулярное х; μ - коэффициент динамической вязкости. Довольно часто движение флюидов не подчиняется данному закону, например, при страгивании пластовой нефти требуется некоторое, отличное от нулевого, напряжение, чтобы разорвать образованные пластовой водой коллоидные структуры. Такие среды называются неньютоновскими, а модель - моделью неньютоновского течения.

Моделирование коллекторов и, соответственно, классификация их параметров проводится по трём направлениям: геометрическое, механическое и связанное с наличием жидкости.

Подпись:    Рис. 1.1. Шлиф                Рис. 1.2. Схема трещиновато-пористого коллектора                  пористой среды       1- зерна (частицы);                          1 – трещины; 2 – пористые блоки2– цемент (кальцит); 3 – глина; 4 - поровое пространствоС геометрической точки зрения, все коллекторы можно подразделить на две большие группы: гранулярные (поровые) (рис. 1.1) и трещиноватые (рис.1.2). Ёмкость и фильтрация в пористом коллекторе определяется структурой порового пространства между зёрнами породы. Для второй группы характерно наличие развитой системы трещин, густота которых зависит от состава пород, степени уплотнения, мощности, структурных условий и так далее. Чаще всего имеют место коллекторы смешанного типа, для которых ёмкостью служат трещины, каверны, поровые пространства, а ведущая роль в фильтрации флюидов принадлежит развитой системе микротрещин, сообщающих эти пустоты между собой. В зависимости  от вида путей фильтрации или главных вместилещ флюида различают коллекторы: трещиновато-пористые, трещиновато-каверновые и т.д. При этом первая часть в названии определяет вид пустот по которым происходит фильтрация. С целью количественного описания реальные сложные породы моделируют идеализированными моделями.

Рис. 1.3. Слепок поровых каналов сцементированного песчаника

Идеализированные модели пористых сред.  Реальные горные породы имеют очень сложную геометрию (рис.1.3) порового пространства или трещин. Кроме того, размеры частиц гранулярных коллекторов или трещин в трещиноватых породах меняются в очень широких пределах - от микрометров до сантиметров. Естественно, что математическое описание течения через столь хаотическую структуру невозможно и, следовательно, необходима некоторая идеализация структуры.

Рис. 1.4. Элемент фиктивного грунта

Фиктивный грунт - среда, состоящая из шариков одного размера, уложенных во всем объёме пористой среды одинаковым образом по элементам из восьми шаров в углах ромбоэдра (рис.1.4). Острый угол раствора ромбоэдра a меняется от 60о до 90о. Наиболее плотная укладка частиц при a=60о и наименее плотная при a=90о (куб)

С целью более точного описания реальных пористых сред в настоящее время предложены более сложные модели фиктивного грунта: с различными диаметрами шаров, элементами нешарообразной формы и так далее.

Идеальный грунт – среда, состоящая из трубочек одного размера, уложенных одинаковым образом по элементам из четырех трубочек в углах ромба. Плотность укладки меняется от угла раствора ромба.

Идеализированные модели  трещиновато - пористых сред.

Рис.1.5. Схема одномерной                 Рис.1.6 Схема пространственной

модели трешиноватой среды                модели трещиноватой среды

Трещиновато-пористые коллекторы рассматриваются как совокупность двух разномасштабных пористых сред (рис.1.2): системы трещин (среда 1), где пористые блоки играют роль “зёрен”, а трещины - роль извилистых “пор” и системы пористых блоков (среда 2).

В простейшем случае трещиноватый пласт моделируется одной сеткой горизонтальных трещин некоторой протяженности    (рис.1.5), причём все трещины одинаково раскрыты и равно отстоят друг от друга (одномерный случай).

В большинстве случаев трещиноватый пласт характеризуется наличием двух взаимно-перпендикулярных систем вертикальных трещин (плоский случай). Такая порода может быть представлена в виде модели коллектора, расчленённого двумя  взаимно-перпендикулярными системами трещин  с равными величинами раскрытия dт и линейного размера блока породы lт. В пространственном случае используют систему трёх взаимно-перпендикулярных систем трещин (рис.1.6).

Деформационные модели. Всякое изменение сил, действующих на горные породы, вызывает их деформацию, а также изменение внутренних усилий - напряжений. Таким образом динамическое состояние горных пород, как и флюидов, описывается реологическими соотношениями. Обычно реологические зависимости получают в результате анализа экспериментальных данных, натурных исследований или физического моделирования. Если объём пустот не изменяется или изменяется так, что его изменением можно пренебречь, то такую среду можно назвать недеформируемой. Если происходит линейное изменение объёма от напряжения, то такая среда - упругая, иначе ещё её называют кулоновской. К таким средам относятся песчаники, известняки, базальты. В упругих телах при снятии нагрузки объём восстанавливается полностью и линия нагрузки совпадает с линией разгрузки. Многие породы деформируются с остаточным изменением объёма, т.е. линия нагружения не совпадает с линией разгружения. Такие породы называются пластичными (глины), текучими (несцементируемые пески) или разрушаемыми.

Модели по ориентированности в пространстве. Горные породы необходимо разделять по  ориентированности  изменения их характеристик в пространстве.  С этой позиции выделяют изотропные и анизотропные тела.  Изотропия - это независимость изменения физических параметров  от  направления,  анизотропия - различные изменения по отдельным направлениям.  Понятие  ориентированности,  применительно  к коллекторам, связано скорее с геометрией расположения частиц,  трещин. Так частицы могут располагаться хаотично и упорядочно в  пространстве. Упорядочные структуры  -  анизотропны  по  поверхностным параметрам.

 С точки зрения теории фильтрации значение твердого скелета горной породы, прежде всего,  геометрическое -  он  ограничивает  ту  область пространства, в  которой  движется  жидкость. Свойства горных пород в теории фильтрации описываются некоторым набором  геометрических  характеристик, осредненных  по достаточно малому,  по сравнению с исследуемым объемом, но содержащему большое число элементов (частиц, пор, трещин). Лишь только в отдельных случаях приходится рассматривать силовое взаимодействие между скелетом и прилегающей к нему жидкостью.

Важнейшая характеристика  -   полная пористость  " mо ",  равная отношению объема пор Vп к общему объему элемента V

.                                                                                  (1.1)

В связи с тем,  что переток жидкости осуществляется через  поверхность, представляется необходимым введение параметра,  связанного с площадью. Такой геометрический параметр называется просветностью " ms " и определяется как отношение площади просветов Fп ко всей площади сечения образца F

.                                                                                   (1.2)

 Пользоваться такими  поверхностными  параметрами  практически  не представляется возможным,  так как в реальных породах они меняются от сечения  к сечению и определить их можно только с помощью микроскопического анализа.  Следовательно, желательно данные параметры  заменить  на объемные, которые можно определить достаточно надежно. Выше отмечалось, что породы можно разделить на изотропные и анизотропные. Для анизотропных коллекторов с упорядоченной структурой данные параметры нельзя заменять на объемные.  Для хаотичных, изотропных сред  указанная  замена  возможна и просветность полагают равной пористости.

В  пористой среде есть тупиковые  и замкнутые поры, в которых движения жидкости не происходит. В связи с этим, вполне обосновано введение понятия открытой пористости, которая описывается соотношением (1.1) , но под Vп  понимается объём открытых пор Vпo.

В реальных условиях твердые зерна породы обволакиваются тонкой плёнкой, остающейся неподвижной даже при значительных градиентах давления. В этом случае подвижный флюид занимает объём, меньший Vпo  и, поэтому, наряду с открытой пористостью часто пользуются понятием динамической пористости 

,                                                                                   (1.3)

где Vпо - объем, занятый подвижной жидкостью.

В дальнейшем, под пористостью мы будем понимать динамическую пористость, кроме специально оговорённых случаев.

Пористость твердых материалов (песок,  бокситы и  т.д.)  меняется незначительно при изменении даже больших давлений, но пористость, например, глины очень восприимчива к сжатию.  Так  пористость  глинистого сланца при  обычном  давлении  равна 0.4 - 0.5,  а на глубине 1800м - 0.05. Для  газовых  и  нефтяных  коллекторов  в  большинстве  случаев m=15-22%, но может меняться в широких пределах: от нескольких долей процента до 52%.

Пористость и просветность фиктивного грунта не зависят от диаметра шарообразных частиц, а зависят только от степени укладки. Для реальных сред коэффициент пористости зависит от плотности укладки частиц и их размера - чем меньше размер зёрен, тем больше пористость. Последнее, связано с ростом образования сводовых структур при уменьшении размера частиц.

В идеализированном представлении коэффициент пористости одинаков для геометрически подобных сред; он не характеризует размеры пор и структуру порового пространства. Поэтому для того, чтобы формулы, описывающие фиктивный грунт, можно было применить для описания реальной среды, вводится линейный размер порового пространства, а именно, некоторый средний размер порового канала d или отдельного зерна пористого скелета d.

Рис.1.7. Гистограмма распределения частиц по размерам

Простейшая геометрическая характеристика пористой среды - эффективный диаметр частиц грунта. Определяют его различными способами - микроскопическим, ситовым, осаждением в жидкости (седиментационным) и так далее. Эффективным диаметром частиц dэ, слагающих реальную пористую среду, называют такой диаметр шаров, образующих эквивалентный фиктивный грунт, при котором гидравлическое сопротивление, оказываемое фильтрующейся жидкости в реальном и эквивалентном грунте, одинаково. Эффективный диаметр определяют по гранулометрическому составу (рис.1.7), например, по формуле веса средней частицы

,                                                        (1.4)

где di - средний диаметр i -й фракции; ni - массовая или счетная доля i-й фракции.

Для того, чтобы привести в соответствие диаметр, определённый ситовым или микроскопическим методами, с сопротивлением коллектора потоку флюида данный диаметр умножают на коэффициент гидравлической формы. Если же диаметры определяются гидродинамическими (седиментационными) методами, то они не требуют указанного уточнения.

Эффективный диаметр является важной, но не исчерпывающей характеристикой пористой среды, потому что он не даёт представления об укладке частиц, их форме. В то же время два образца грунта, имеющих одинаковые эффективные диаметры, но различную форму частиц и структуру укладки, имеют различные фильтрационные характеристики.

Таким образом, для определения геометрической структуры пористой среды, кроме пористости и эффективного диаметра, нужны дополнительные объективные характеристики. Одной из таких характеристик является гидравлический радиус пор R, который связан с диаметром частиц породы.

Динамика фильтрационного течения, в основном, определяется трением флюида о скелет коллекторов, которое зависит от площади поверхности частиц грунта. В связи с этим, одним из важнейших параметров является удельная поверхность Sуд , то есть суммарная площадь поверхности частиц, содержащихся в единице объёма.

Удельная поверхность нефтесодержащих пород с достаточной точностью определяется формулой

,                                                    (1.5)

где k - проницаемость в дарси [мкм2].

Среднее значение Sуд для нефтесодержащих пород изменяется в пределах 40тыс. - 230тыс.м2/м3. Породы с удельной поверхностью больше 230тыс. м2/м3 непроницаемы или слабопроницаемы (глины, глинистые пески и так далее).

В практике нефтегазодобычи помимо чисто геометрической характеристики доли пустот (пористости) вводят параметры, связанные с наличием нефти, газа или воды:

а) насыщенность - отношение объёма Vf данного флюида, содержащегося в порах, к объёму пор Vп

.                                                                                    (1.6)

По виду флюида различают нефтенасыщенность, газонасыщенность, водонасыщенность.

б) связанность - отношение объёма, связанного с породой флюида Vfс, к объёму пор

.                                                                                 (1.7)

Важнейшей характеристикой фильтрационных свойств породы является проницаемость. Проницаемость - параметр породы, характеризующий её способность пропускать к забою скважины флюиды. Различают проницаемости: абсолютную, эффективную или фазовую и относительную. Абсолютная проницаемость - свойство породы и не зависит от свойств фильтрующегося флюида и перепада давления, если нет взаимодействия флюидов с породой. Фазовой называется проницаемость пород для данного флюида при наличии в порах многофазных систем. Значение её зависит не только от физических свойств пород, но также от степени насыщенности порового пространства флюидами и их физических свойств. Относительной проницаемостью называется отношение фазовой к абсолютной. Проницаемость измеряется: в системе СИ - м2; технической системе - дарси (д); 1д=1,02мкм2=1,02 .10-12м2.

Физический смысл проницаемости k заключается в том, что проницаемость характеризует площадь сечения каналов пористой среды, по которым происходит фильтрация.

Для реальных сред радиус пор связан с проницаемостью формулой Котяхова

,                                                                       (1.8)

где k -д; R - м; j - структурный коэффициент (j=0.5035/m1,1 - для зернистых сред).

Проницаемость песчаных коллекторов обычно находится в пределах k=100-1000мд, а для глин характерны значения проницаемости в тысячные доли миллидарси.

Проницаемость определяется геометрической структурой пористой среды, т.е. размерами и формой частиц, атакже системой их упаковки.

Имеется множество попыток теоретически установить зависимость проницаемости от этих характеристик, исходя из закона Пуазейля для ламинарного движения в трубах и Стокса для обтекания частиц при той или иной  схематизированной  модели пористой среды. Поскольку реальные породы не укладываются в рамки этих геометрических моделей, то теоретические расчеты проницаемости ненадёжны. Поэтому обычно проницаемость определяют опытным путём.

Проницаемость можно рассчитать по известной удельной поверхности  

.                                                                                     (1.9)

Аналогом пористости для трещинных сред является трещиноватость mт или, иначе, коэффициент трещиноватости. Иногда данный параметр называют трещинной пористостью. Трещиноватостью называют отношение объёма трещин Vт ко всему объёму V трещинной среды.

 .                                                                              (1.10)

Для трещинно-пористой среды вводят суммарную (общую) пористость, прибавляя к трещиноватости пористость блоков.

Второй важный параметр - густота. Густота трещин Гт- это отношение полной длины å li всех трещин, находящихся в данном сечении трещинной породы к удвоенной площади сечения f

                                                                        (1.11)

Из (1.11) следует, что для идеализированной трещинной среды

mт = aГdт,                                                                               (1.12)

где dт - раскрытость; a - безразмерный коэффициент, равный 1,2, 3 для одномерного, плоского и пространственного случаев, соответственно.

Для реальных пород значение коэффициента a зависит от геометрии систем трещин в породе.

Для квадратной сетки трещин (плоский случай) Гт=1 / lт, где lт -размер блока породы. Средняя длина трещин l * равняется среднему размеру блока породы и равна

l*=1 / Гт .                                                                                  (1.13)

В качестве раскрытости (ширины трещины) берут среднюю величину по количеству трещин в сечении f. Среднюю гидравлическую ширину определяют, исходя из гидравлического параметра - проводимости системы трещин. Ширина трещин существенно зависит от одновременного влияния следующих двух факторов, обусловленных изменением давления жидкости, действующего на поверхность трещин:

·     увеличение объёма зёрен (пористых блоков) с падением давления жидкости;

·     увеличение сжимающих усилий на скелет продуктивного пласта.

Указанные факторы возникают из-за того, что в трещиноватых пластах горное давление, определяющее общее напряжённое состояние среды, уравновешивается напряжениями в скелете породы и пластового давления (давлением жидкости в трещинах). При постоянстве горного давления снижение пластового давления при отборе жидкости из пласта приводит к увеличению нагрузки на скелет среды. Одновременно с уменьшением пластового давления уменьшаются усилия, сжимающие пористые блоки трещиноватой породы.     

 Поэтому трещинный пласт - деформируемая среда. В первом приближении можно считать

,                                                             (1.14)

где dт0 - ширина трещины при начальном давлении р0 ; b*т=bп l /dт0 - сжимаемость трещины;    bп - сжимаемость материалов блоков; l - среднее расстояние между трещинами.

Для трещинных сред l/ dт >100 и поэтому сжимаемость трещин высока.

Статистика



Яндекс.Метрика