foto1
foto1
foto1
foto1
foto1

Добыча нефти и газа

Изучаем тонкости нефтегазового дела ВМЕСТЕ!

Системы и технология разработки нефтяных месторождений

ОБЪЕКТ И СИСТЕМА РАЗРАБОТКИ

Нефтяные и нефтегазовые месторождения - это скопления углеводородов в земной коре, приуроченные к одной или нескольким локализованным геологическим структурам, т.е. структурам, находящимся вблизи одного и того же географического пункта.

Залежью называется естественное локальное единичное скопление нефти в одном или нескольких сообщающихся между собой пластах-коллекторах, т. е. в горных породах, способных вмещать в себе и отдавать при разработке нефть.

Залежи углеводородов, входящие в месторождения, обычно находятся в пластах или массивах горных пород, имеющих различное распространение под землей, часто — различные геолого-физические свойства. Во многих случаях отдельные нефтегазоносные пласты разделены значительными толщами непроницаемых пород или находятся только на отдельных участках месторождения.  Такие обособленные или отличающиеся по свойствам пласты разрабатывают различными группами скважин, иногда при этом используют различную технологию.

Размер и многопластовость месторождений с емкостными свойствами коллекторов определяют в целом величину и плотность запасов нефти, а в сочетании с глубиной залегания oбycловливают выбор системы разработки и способов добычи нефти.

С и с т е м о й  р а з р а б о т к и нефтяного месторождения следует называть совокупность взаимосвязанных инженерных решений, определяющих объекты разработки; последовательность и темп их разбуривания и обустройства; наличие воздействия на пласты с целью извлечения из них нефти и газа; число, соотношение и расположение нагнетательных и добывающих скважин; число резервных скважин, управление разработкой месторождения, охрану недр и окружающей среды. Построить систему разработки месторождения означает найти и осуществить указанную выше совокупность инженерных решений.

Введем понятие об объекте разработки месторождения.

О б ъ е к т  р а з р а б о т к и — это искусственно выделенное в пределах разрабатываемого месторождения геологическое образование (пласт, массив, структура, совокупность пластов), содержащее промышленные запасы углеводородов, извлечение которых из недр осуществляется при помощи определенной группы скважин или других горнотехнических сооружений.

Разработчики, пользуясь распространенной у нефтяников терминологией, обычно считают, что каждый объект разрабатывается «своей сеткой скважин». Необходимо подчеркнуть, что сама природа не создает объекты разработки — их выделяют люди, разрабатывающие месторождение. В объект разработки может быть включен один, несколько или все пласты месторождения.

Основные особенности объекта разработки — наличие в нем промышленных запасов нефти и определенная, присущая данному объекту группа скважин, при помощи которых он разрабатывается.

Чтобы лучше усвоить понятие объекта разработки, рассмотрим пример. Пусть имеем месторождение, разрез которого показан на рис. 1. Это месторождение содержит три пласта, отличающиеся толщиной, областями распространения насыщающих их углеводородов и физическими свойствами. В таблице приведены основные свойства пластов 1, 2 и 3, залегающих в пределах месторождения. Можно утверждать, что на рассматриваемом месторождении целесообразно выделить два объекта разработки, объединив пласты 1 и 2 в один объект разработки (объект 1), а пласт 3 разрабатывать  как отдельный объект (объект П).

 

Геолого-физические

свойства

Пласт

1

2

3

Извлекаемые запасы нефти, млн. т.

Толщина, м

Проницаемость, 10-2 мкм2

Вязкость нефти, 10-2 Па·с

 

200,0

10,0

100,0

50

 

50,0

5,0

150,0

60

70,0

15,0

500,0

3

 

 

 

 

 

Рис.1. Разрез многопластового нефтяного месторождения

 

Включение пластов 1 и 2 в один объект обусловлено тем, что они имеют близкие значения проницаемости и вязкости нефти и находятся на небольшом расстоянии друг от друга по вертикали. К тому же извлекаемые запасы нефти в пласте 2 сравнительно невелики. Пласт 3 хотя и имеет меньшие по сравнению с пластом 1 извлекаемые запасы нефти, но содержит маловязкую нефть и высокопроницаемый. Следовательно, скважины, вскрывшие этот пласт, будут высокопродуктивными. Кроме того, если пласт 3, содержащий маловязкую нефть, можно разрабатывать с применением обычного заводнения, то при разработке пластов 1 и 2, характеризующихся высоковязкой нефтью, придется  с начала разработки применять иную технологию, например вытеснение нефти паром, растворами полиакриламида (загустителя воды) или при помощи внутрипластового горения.

Вместе с тем следует учитывать, что, несмотря на существенное различие параметров пластов 1, 2 и 3, окончательное решение о выделении объектов разработки принимают на основе анализа технологических и технико-экономических показателей различных вариантов объединения пластов в объекты разработки.

Объекты разработки иногда подразделяют на следующие виды: самостоятельный, т. е. разрабатываемый в данное время, и возвратный, т. е. тот, который будет разрабатываться скважинами, эксплуатирующими в этот период другой объект.

Важная составная часть создания такой системы — выделение объектов разработки. Поэтому рассмотрим этот вопрос более подробно. Заранее можно сказать, что объединение в один объект как можно большего числа пластов на первый взгляд всегда представляется выгодным, поскольку при таком объединении потребуется меньше скважин для разработки месторождения в целом. Однако чрезмерное объединение пластов в один объект может привести к существенным потерям в нефтеотдаче и в конечном счете к ухудшению технико-экономических показателей. На выделение объектов разработки влияют следующие факторы.

1. Геолого-физические свойства пород-коллекторов нефти и газа. Резко отличающиеся по проницаемости, общей и эффективной толщине, а также неоднородности пласты во многих случаях нецелесообразно разрабатывать как один объект, поскольку они могут существенно отличаться по продуктивности, пластовому давлению в процессе их разработки и, следовательно, по способам эксплуатации скважин, скорости выработки запасов нефти и изменению обводненности продукции. Для различных по площадной неоднородности пластов могут быть эффективными различные сетки скважин, так что объединять такие пласты в один объект разработки оказывается нецелесообразным. В сильно неоднородных по вертикали пластах, имеющих отдельные низкопроницаемые пропластки, не сообщающиеся с высокопроницаемыми, бывает трудно обеспечить приемлемый охват горизонта  воздействием по вертикали вследствие того, что в активную разработку включаются только высокопроницаемые пропластки, а низкопроницаемые прослои не подвергаются воздействию закачиваемого в пласт агента (воды, газа). С целью повышения охвата таких пластов разработкой их стремятся разделить на несколько объектов.

2. Физико-химические свойства нефти и газа. Важное значение при выделении объектов разработки имеют свойства нефтей. Пласты с существенно различной вязкостью нефти бывает нецелесообразно объединять в один объект, так как их можно разрабатывать с применением различной технологии извлечения нефти из недр с различными схемами расположения и плотностью сетки скважин. Резко различное содержание парафина, сероводорода, ценных углеводородных компонентов, промышленное содержание других полезных ископаемых также может стать причиной невозможности совместной разработки пластов как одного объекта вследствие необходимости использования существенно различной технологии извлечения нефти и других полезных ископаемых из пластов.

3. Фазовое состояние углеводородов и режим пластов. Различные пласты, залегающие сравнительно недалеко друг от друra по вертикали и имеющие сходные геолого-физические свойства, в ряде случаев бывает нецелесообразно объединять в один объект в результате различного фазового состояния пластовых углеводородов и режима пластов. Так, если в одном пласте имеется значительная газовая шапка, а другой разрабатывается при естественном упруговодонапорном режиме, то объединение их в один объект может оказаться нецелесообразным, так как для их разработки потребуются различные схемы расположения и числа скважин, а также различная технология извлечения нефти и газа.

4. Условия управления процессом разработки нефтяных месторождений. Чем больше пластов и пропластков включено в один объект, тем технически и технологически труднее осуществлять контроль за перемещением разделов нефти и вытесняющего ее агента (водонефтяных и газонефтяных разделов) в отдельных пластах и пропластках, труднее осуществлять раздельное воздействие на пропластки и извлечение из них нефти и газа, труднее изменять скорости выработки пластов и пропластков. Ухудшение условий управления разработкой месторождения ведет к уменьшению нефтеотдачи.

5. Техника и технология эксплуатации скважин. Могут быть многочисленные технические и технологические причины, приводящие к целесообразности или нецелесообразности применения отдельных вариантов выделения объектов. Например, если из скважин, эксплуатирующих какой-то пласт или группы пластов, выделенных в объекты разработки, предполагается отбирать настолько значительные дебиты жидкости, что они будут предельными для современных средств эксплуатации скважин. Поэтому дальнейшее укрупнение объектов окажется невозможным по технической причине.

В заключение следует еще раз подчеркнуть, что влияние каждого из перечисленных факторов на выбор объектов разработки должно быть сначала подвергнуто технологическому и технико-экономическому анализу и только после него можно принимать решение о выделении объектов разработки.

 

РЕЖИМЫ РАБОТЫ ЗАЛЕЖЕЙ

 

Режимом работы залежи называется проявление преобладающего вида пластовой энергии в процессе разработки.

Источники и характеристики пластовой энергии

Энергия — это физическая величина, определяющая способность тел совершать работу.    Работа, применительно к нефтедобыче, представляется  как разность энергий или освободившаяся энергия, необходимая для перемещения нефти в пласте и дальше на поверхность. Различаем естественную и в случае ввода извне, с поверхности искусственную пластовые энергии. Они выражаются в виде потенциальной энергии как энергии положения и энергии упругой деформации.

Потенциальная энергия положения

                     ,                                                      (1. 1)

где М — масса тела (пластовой или закачиваемой с поверхности воды, нефти, свободного газа);  — ускорение свободного падения;  - высота, на которую поднято тело по сравнению с произвольно выбранной плоскостью начала отсчета (для жидких тел это гидростатический напор).

Поскольку масса тела  ,  , то энергия положения равна произведению объема тела V на создаваемое давление  р:

                              ,                             (1.2)

где  r — плотность тела. То есть, чем больше масса тела и высота его положения (напор) или объем тела и создаваемое им давление, тем больше потенциальная энергия положения.

Потенциальная энергия упругой деформации

                                           ,                                      (1.3)

где     — сила, равная произведению давления   на площадь ;  — линейная деформация (расширение).

Так как приращение объема  , то

                                                                     (1.4)

Приращение объема   при упругой деформации можно представить, исходя из закона Гука, через объемный коэффициент упругости среды

                                                                           (1.5)

то

                               .                                           (1.6)

Следовательно, чем больше упругость и объем V среды (воды, нефти, газа, породы), давление   и возможное снижение давления  , тем больше потенциальная энергия упругой деформации. Количество пластовой воды и свободного газа определяется соответственно размерами водоносной области и газовой шапки, а количество растворенного в нефти газа — объемом нефти   и давлением  насыщения нефти газом (по закону Генри) или газосодержанием (газонасыщенностью) пластовой нефти   (объемное количество растворенного газа, измеренного в стандартных условиях, которое содержится в единице объема пластовой нефти):

                         ,                            (1. 7)

где  — коэффициент растворимости газа в нефти.

Отсюда следует, что основными источниками пластовой энергии служат:

- энергия напора (положения) пластовой воды (контурной, подошвенной);

- энергия расширения свободного газа (газа газовой шапки);

- энергия расширения растворенного в нефти газа;

- энергия упругости (упругой деформации) жидкости (воды, нефти) и породы;

- энергия напора (положения) нефти.

Энергии этих видов могут проявляться в залежи совместно, а энергия упругости нефти, воды, породы наблюдается всегда. В нефтегазовых залежах в присводовой части активную роль играет энергия газовой шапки, а в приконтурных зонах — энергия напора или упругости пластовой воды. В зависимости от темпа отбора нефти добывающие скважины, расположенные вблизи внешнего контура нефтеносности, могут создавать такой экранирующий эффект, при котором в центре залежи действует в основном энергия расширения растворенного газа, а на периферии — энергия напора или упругости пластовой воды и т. д. 

Эффективность расходования пластовой энергии, т. е. количество получаемой нефти на единицу уменьшения ее величины, зависит от вида и начальных запасов энергии, способов и темпа отбора нефти.

На основании изложенного можно сказать, что значение пластовой энергии зависит от давления, упругости жидкости (нефти, воды) и породы, газосодержания, объемов воды и газа, связанных с нефтяной залежью. Искусственная энергия вводится в пласт при закачке в нагнетательные скважины воды, газа, пара и различных растворов.

Пластовая энергия расходуется на преодоление разного рода сил сопротивления, гравитационных, капиллярных сил при перемещении нефти и проявляется в процессе снижения давления, создания депрессии на пласт-коллектор  (разности между пластовым   и забойным   давлениями).

По преобладающему виду энергии различают следующие режимы работы нефтяных залежей: упругий; водонапорный; растворенного газа; газонапорный; гравитационный; смешанные. Такое деление на режимы в «чистом виде» весьма условно. При реальной разработке месторождений в основном отмечают смешанные режимы.

Упругий режим

Условие упругого режима — превышение пластового давления, точнее давления во всех точках пласта, над давлением насыщения нефти газом  . При этом забойное давление   не ниже , нефть находится в однофазном состоянии. Созданное в добывающей скважине возмущение давления (депрессия) распространяется с течением времени в глубь пласта (наблюдается первая фаза упругого режима). Вокруг скважины образуется увеличивающаяся депрессионная воронка. Приток нефти происходит за счет энергии упругости жидкости (нефти), связанной воды и породы — энергии их упругого расширения. При снижении давления увеличивается объем нефти и связанной воды и уменьшается объем пор; соответствующий объем нефти поступает в скважины. Затем депрессионные воронки отдельных скважин, расширяясь, сливаются, образуется общая депрессионная воронка, которая по мере отбора нефти распространяется до границ залегания залежи.

Если залежь литологически или тектонически ограничена (замкнута), то в дальнейшем наступает вторая фаза упругого режима, в течение которой на контуре ограничения пласта, совпадающим с контуром нефтеносности, давление уменьшается во времени; уменьшается также давление в залежи. Упругий режим может быть продолжительным при значительном недонасыщении нефти газом. В противном случае этот режим быстро может перейти в другой вид. В объеме всего пласта упругий запас нефти составляет обычно малую долю (приблизительно 5— 10 %) по отношению к общему запасу, однако он может выражать довольно большое количество нефти в массовых единицах. В случае ограниченности залежи во второй фазе проявляется разновидность упругого режима — замкнуто-упругий режим.

Если залежь не ограничена, то общая депрессионная воронка будет распространяться в законтурную водоносную область, значительную по размерам и гидродинамически связанную с залежью. Упругий режим будет переходить во вторую разновидность — упруговодонапорный режим. Упруговодонапорный режим обусловлен проявлением энергии упругого расширения нефти, связанной воды, воды в водоносной области, пород пласта в нефтяной залежи и в водоносной области и энергии напора краевых вод в водоносной области.

Для замкнуто-упругого и упруговодонапорного режимов характерно значительное снижение давления в начальный период постоянного отбора нефти (или снижение текущего отбора при постоянном давлении  ,). При упруговодонапорном режиме темп дальнейшего снижения давления (текущего отбора) замедляется. Это связано с тем, что зона возмущения охватывает увеличивающиеся во времени объемы водоносной области и для обеспечения одного и того же отбора нефти требуется уже меньшее снижение давления. Если внешняя граница водоносной области находится выше (на более высокой гипсометрической отметке), чем забой скважины, то кроме энергии упругости действует потенциальная энергия напора (положения) контурной воды.

Водонапорный режим

С момента начала распространения депрессионной воронки за пределы водонефтяного контакта (ВНК) в законтурную водоносную область вода внедряется в нефтяную зону и вытесняет нефть к забоям добывающих скважин. Когда наступает равновесие (баланс) между отбором из залежи жидкости и поступлением в пласт краевых или подошвенных вод при пластовых термодинамических условиях, проявляет себя водонапорный режим, который еще называют жестким водонапорным вследствие равенства количеств отобранной жидкости (нефти, воды} и вторгшейся в залежь воды. Существование его связывают с наличием контура питания и с закачкой в пласт необходимых объемов воды для выполнения этого условия. В естественных условиях такой режим в чистом виде не встречается, однако его выделение способствует успешному и достаточно надежному проектированию процесса извлечения нефти. Нарушение равновесия между отбором жидкости и поступлением воды приводит к тому, что начинают играть роль энергии других видов: при увеличении поступления воды — энергия упругости; при уменьшении поступления воды (увеличении отбора) и снижении давления ниже давления насыщения — энергия расширения растворенного газа. При водонапорном режиме нефть в пласте находится в однофазном состоянии; выделения газа в пласте не происходит, как и при упругом режиме.

Режим растворенного газа

Режим растворенного газа обусловлен проявлением энергии расширения растворенного в нефти газа при снижении давления ниже давления насыщения. Снижение давления ниже значения , сопровождается выделением из нефти ранее растворенного в ней газа. Пузырьки этого газа, расширяясь, продвигают нефть и сами перемещаются по пласту к забоям скважин. Часть пузырьков газа сегрегирует (всплывает), накапливаясь в своде структуры и образуя газовую шапку. Режим растворенного газа в чистом виде может проявиться в пласте, содержащем нефть, полностью насыщенную газом (начальное давление  ). Этот режим протекает в две фазы. В течение первой фазы депрессионная воронка каждой скважины расширяется до слияния с воронками других скважин или до естественной границы пласта (контура нефтеносности). Во второй фазе происходит общее снижение давления в залежи и на линиях слияния депрессионных воронок или на границе пласта. Для него характерны высокий темп снижения пластового давления (отборов нефти) и непрерывное изменение газового фактора (отношение расхода добываемого газа, приведенного к стандартным условиям, к расходу дегазированной нефти): вначале увеличение до максимального значения, затем уменьшение. Если залежь характеризуется некоторым превышением начального давления   над давлением , то в начальный период при снижении давления до значения  она работает за счет энергии упругости либо за счет энергий упругости и напора вод. Если  <  то энергия расширения газа сочетается с этими энергиями.

Газонапорный режим

Газонапорный режим (режим газовой шапки) связан с преимущественным проявлением энергии расширения сжатого свободного газа газовой шапки. Под газовой шапкой понимают скопление свободного газа над нефтяной залежью, тогда саму залежь называют нефтегазовой (или нефтегазоконденсатной). В зависимости от состояния давления в газовой шапке различают газонапорный режим двух видов: упругий и жесткий.

При упругом газонапорном режиме в результате некоторого снижения давления на газонефтяном контакте (ГНК) вследствие отбора нефти начинается расширение объема свободного газа газовой шапки и вытеснение им нефти. По мере отбора нефти из залежи давление газа уменьшается.

Жесткий газонапорный режим отличается от упругого тем, что давление в газовой шапке в процессе отбора нефти остается постоянным. Такой режим в чистом виде возможен только при непрерывной закачке в газовую шапку достаточного количества газа или же в случае значительного превышения запасов газа над запасами нефти (в объемных единицах при пластовых условиях), когда давление в газовой шапке уменьшается незначительно по мере отбора нефти.

В условиях проявления газонапорного режима начальное давление  (на уровне ГНК) равно давлению . Поэтому при создании депрессии давления происходит выделение растворенного газа и нефть движется по пласту за счет энергии его расширения. Часть газа сегрегирует в повышенные зоны и пополняет газовую шапку. Это способствует замедлению темпов снижения пластового давления, а также обусловливает малое значение газового фактора для скважин, удаленных от ГНК. Скважины, расположенные вблизи ГНК, характеризуются очень высоким значением газового фактора вследствие прорывов газа.

Гравитационный режим

Гравитационный режим начинает проявляться тогда, когда действует только потенциальная энергия напора нефти (гравитационные силы), а остальные энергии истощились. Выделяют такие его разновидности:

 1) гравитационный режим с перемещающимся контуром нефтеносности (напорно-гравитационный), при котором нефть под действием собственного веса перемещается вниз по падению крутозалегающего пласта и заполняет его пониженные части; дебиты скважин небольшие и постоянные;

2) гравитационный режим с неподвижным контуром нефтеносности (со свободной поверхностью), при котором уровень нефти находится ниже кровли горизонтально залегающего пласта; дебиты скважин меньше дебитов при напорно-гравитационном режиме и со временем медленно уменьшаются.

Смешанные режимы

Режим, при котором возможно одновременное проявление энергий растворенного газа, упругости и напора воды, называют смешанным. Его рассматривают зачастую как вытеснение газированной нефти (смеси нефти и свободного газа) водой при снижении   ниже  . Давление на контуре нефтеносности может равняться   или быть выше его. Такой режим протекает в несколько фаз: сначала проявляется энергия упругости нефти и породы, затем подключается энергия расширения растворенного газа и дальше — энергия упругости и напора водонапорной области. К такому сложному режиму относят также сочетание газо- и водонапорного режимов (газоводонапорный режим), которое иногда наблюдается в нефтегазовых залежах с водонапорной областью. Особенность такого режима — двухстороннее течение жидкости: на залежь нефти одновременно наступает ВНК и ГНК, нефтяная залежь потокоразделяющей поверхностью (плоскостью; на карте линией) условно делится на зону, разрабатываемую при газонапорном режиме, и зону, разрабатываемую при водонапорном режиме.

Обобщение и реализация режимов

Режимам работы нефтяных залежей дают также дополнительные характеристики. Различают режимы с перемещающимися и неподвижными контурами нефтеносности. К первым относят водонапорный, газонапорный, напорно-гравитационный и смешанный режимы, а ко вторым — упругий, режим растворенного газа и гравитационный со свободной поверхностью нефти. Водо-, газонапорный и смешанный режимы называют режимами вытеснения (напорными режимами), а остальные — режимами истощения (истощения пластовой энергии).

Названные выше режимы рассмотрены в плане их естественного проявления (естественные режимы). Природные условия залежи лишь способствуют развитию определенного режима работы. Конкретный режим можно установить, поддержать или  заменить другими путем изменения темпов отбора и суммарного отбора жидкости, ввода дополнительной энергии в залежь и т. д. Например, поступление воды отстает от отбора жидкости, что сопровождается дальнейшим снижением давления в залежи. При вводе дополнительной энергии создаваемые режимы работы залежи называют искусственными (водо- и газонапорный).

 

ТЕХНОЛОГИЯ И ПОКАЗАТЕЛИ РАЗРАБОТКИ

 

Технологией разработки нефтяных месторождений называется совокупность способов, применяемых для извлечения нефти из недр. В данном выше понятии системы разработки в качестве одного из определяющих ее факторов указано наличие или отсутствие воздействия на пласт. От этого фактора зависит необходимость бурения нагнетательных скважин. Технология же разработки пласта не входит в определение системы разработки. При одних и тех же системах можно использовать различные технологии разработки месторождений. Конечно, при проектировании разработки месторождения необходимо учитывать, какая система лучше соответствует избранной технологии и при какой системе разработки могут быть наиболее легко получены заданные показатели.

Разработка каждого нефтяного месторождения характеризуется определенными показателями. Рассмотрим общие показатели, присущие всем технологиям разработки. К ним можно отнести следующие.

Д о б ы ч а  н е ф т и  — основной показатель, суммарный по всем добывающим скважинам, пробуренным на объект в единицу времени, и среднесуточная добыча приходящаяся на одну скважину. Характер изменения во времени этих показателей зависит не только от свойств пласта и насыщающих его жидкостей, но и от технологических операций, осуществляемых на месторождении на различных этапах разработки

Добыча жидкости — суммарная добыча нефти и воды в единицу времени. Из скважин в чисто нефтеносной части залежи в течение какого-то времени безводного периода эксплуатации скважин добывают чистую нефть. По большинству месторождений рано или поздно продукция их начинает обводняться. С этого момента времени добыча жидкости превышает добычу нефти.

Д о б ы ч а  г а з а  . Этот показатель зависит от содержания газа в пластовой нефти, подвижности его относительно подвижности нефти в пласте, отношения пластового давления к давлению насыщения, наличия газовой шапки и системы разработки месторождения. Добычу газа характеризуют с noмощью газового фактора, т. е. отношения объема добываемого из скважины за единицу времени газа, приведенного к стандартным условиям, к добыче за ту же единицу времени дегазированной нефти. Средний газовый фактор как технологический показатель разработки определяют по отношению текущей добычи газа к текущей добыче нефти.

При разработке месторождения с поддержанием пластового давления выше давления насыщения газовый фактор остается неизменным и поэтому характер изменения добычи газа повторяет динамику добычи нефти. Если же в процессе разработки пластовое давление будет ниже давления насыщения, то газовый фактор изменяется следующим образом. Во время разработки на режиме растворенного газа средний газовый фактор вначале увеличивается, достигает максимума, а затем уменьшается и стремится к нулю при пластовом давлении, равном атмосферному. В этот момент режим растворенного газа переходит в режим гравитационный.

Рассмотренные показатели отражают динамическую характеристику процесса извлечения нефти, воды и газа. Для характеристики процесса разработки за весь прошедший период времени используют интегральный показатель — н а к о п л е н н у ю   д о б ы ч у. Накопленная добыча нефти отражает количество нефти, добытое по обьекту за определенный период времени с начала разработки, т. е. с момента пуска первой добывающей скважины.

В отличие от динамических показателей накопленная добыча может только увеличиваться. Со снижением текущей добычи темп увеличения соответствующего накопленного показателя уменьшается. Если текущая добыча равна нулю, то рост накопленного показателя прекращается и он остается постоянным.

Помимо рассмотренных абсолютных показателей, выражающих количественно добычу нефти, воды и газа, используют и относительные, характеризующие процесс извлечения продуктов пласта в долях от запасов нефти.

Т е м п  р а з р а б о т к и  — отношение годовой добычи нефти к извлекаемым запасам, выражается в процентах.

                                                                     (1.8)

Этот показатель изменяется во времени, отражая влияние на процесс разработки всех технологических операций, осуществляемых на месторождении, как в период его освоения, так и в процессе регулирования.

На рис. 2 приведены кривые, характеризующие темп разработки во времени по двум месторождениям с различными геолого-физическими свойствами. Судя по приведенным зависимостям, процессы разработки этих месторождений существенно отличаются. По кривой 1 можно выделить четыре периода разработки, которые будем называть стадиями.

П е р в а я   с т а д и я (стадия ввода месторождения в эксплуатацию), когда происходит интенсивное бурение скважин основного фонда, темп разработки непрерывно увеличивается и достигает максимального значения к концу периода. На ее протяжении добывают, как правило, безводную нефть. Длительность ее зависит от размеров месторождения и темпов бурения скважин, составляющих основной фонд.

Достижение максимального годового отбора извлекаемых запасов нефти не всегда совпадает с окончанием бурения скважин. Иногда оно наступает раньше срока разбуривания залежи.

 

 

Рис.2. График изменения темпа разработки во времени

1- месторождение А; 2- месторождение В; I, II, III, IV –стадии разработки

 

В т о р а я  с т а д и я (стадия поддержания достигнутого максимального уровня добычи нефти) характеризуется более или менее стабильными годовыми отборами нефти. В задании на проектирование разработки месторождения часто указывают именно максимальную добычу нефти, год, в котором эта добыча должна быть достигнута, а также продолжительность второй стадии.

Основная задача этой стадии осуществляется путем бурения скважин резервного фонда, регулировании режимов скважин и освоении в полной мере системы заводнения или другого метода воздействия на пласт. Некоторые скважины к концу стадии перестают фонтанировать, и их переводят на механизированный способ эксплуатации (с помощью насосов).

Третья стадия (стадия падающей добычи нефти) характеризуется интенсивным снижением темпа разработки на фоне прогрессирующего обводнения продукции скважин при водонапорном режиме и резким Увеличением газового фактора при газонапорном режиме. Практически все скважины эксплуатируются механизированным способом. Значительная часть скважин к концу этой стадии выбывает из эксплуатации.

Ч е т в е р т а я  с т а д и я (завершающая стадия разработки) характеризуется низкими темпами разработки. Наблюдаются высокая обводненность продукции и медленное уменьшение добычи нефти.

Первые три стадии, в течение которых отбирают от 70 до 95% от извлекаемых запасов нефти, образуют основной период разработки. На протяжении четвертой стадии извлекают оставшиеся запасы нефти. Однако именно в этот период, характеризующий в целом эффективность реализованной системы разработки, определяют конечное значение количества извлекаемой нефти, общий срок разработки месторождения и добывают основной объем попутной воды.

Как видно из рис. 2 (кривая 2), для некоторых месторождений характерно, что следом за первой стадией наступает стадия падения добычи нефти. Иногда это происходит уже в период ввода месторождения в разработку. Такое явление характерно для месторождений с вязкими нефтями или тогда, когда к концу первой стадии были достигнуты высокие темпы разработки порядка 12 — 20%/год и более. Из опыта разработки следует, что максимальный темп разработки не должен превышать 8 — 10 % год, а в среднем за весь срок разработки величина его должна быть в пределах 3 — 5 %/год.

Отметим еще раз, что описанная картина изменения добычи нефти из месторождения в процессе его разработки будет происходить естественно в том случае, когда технология разработки месторождения и, может быть, система разработки останутся неизменными во времени. В связи с развитием методов повышения нефтеотдачи пластов на какой-то стадии разработки месторождения, скорее всего на третьей или четвертой, может быть применена новая технология извлечения нефти из недр, вследствие чего снова будет расти добыча нефти из месторождения.

В практике анализа и проектирования разработки нефтяных месторождений используют также показатели, характеризующие темпы отбора запасов нефти во времени: темп отбора балансовых запасов  и темп отбора остаточных извлекаемых запасов . По определению

                                            (1.9)

где  — годовая добыча нефти по месторождению в завиcимости от времени разработки; — балансовые запасы нефти.

Если (1.8) — темп разработки, то связь между  и  выражается равенством

  ,                                (1.10)

где  — нефтеотдача к концу срока разработки месторождения.

Темп отбора остаточных извлекаемых запасов нефти

      ,                    (1.11)

где - накопленная добыча нефти по месторождению в зависимости от времени разработки

Накопленная добыча нефти

,                      (1.12)

где - время разработки месторождения; -текущее время.

Выведем формулу, связывающую показатели  и . Из (1.11) следует

                            

Продифференцировав по времени обе части этого равенства, получим

.

Учитывая, что , получим следующее выражение:

.                          (1.13)

Подставив  в последнее равенство выражение для , будем иметь

                                        (1.14)

Дифференциальное уравнение (1.14) позволяет вычислять значения  при известных .

Рассмотрим интегральный показатель процесса добычи нефти:

     ,    (1.15)

где  — коэффициент использования извлекаемых запасов. Его значение непрерывно возрастает, стремясь к единице. Действительно, при

 ,                             (1.16)

 так как добыча нефти к концу разработки становится равной извлекаемым запасам.

По аналогии текущую нефтеотдачу или коэффициент отбора балансовых запасов определяют из выражения

  .          (1.17)

К концу разработки месторождения, т. е. При , нефтеотдача

   .                 (1.18)

Обводненность  продукции  - отношение дебита воды к суммарному дебиту нефти и воды. Этот показатель изменяется во времени  от нуля до единицы:

.                   (1.19)

Характер изменения показателя  зависит от ряда факторов. Один из основных — отношение вязкости нефти к вязкости воды в пластовых условиях :

,                         (1.20)

где и  — динамическая вязкость соответственно нефти и воды.

При разработке месторождений с высоковязкими нефтями вода может появиться в продукции некоторых скважин с начала их эксплуатации. Некоторые залежи с маловязкими нефтями разрабатываются длительное время с незначительной обводненностью. Граничное значение  между вязкими и маловязкими нефтями изменяется от 3 до 4.

На характер обводнения продукции скважин и пласта влияют также послойная неоднородность пласта (с увеличением степени неоднородности сокращается безводный период эксплуатации скважин) и положение интервала перфорации скважин относительно водонефтяного контакта.

Опыт разработки нефтяных месторождений свидетельствует о том, что при небольшой вязкости нефти более высокая нефтеотдача достигается при меньшей обводненности. Следовательно, обводненность может служить косвенным показателем эффективности разработки месторождения. Если наблюдается более интенсивное по сравнению с проектным обводнение продукции, то это может служить показателем того, что залежь охвачена процессом заводнения в меньшей степени, чем предусматривалось.

Темп отбора жидкости — отношение годовой добычи жидкости в пластовых условиях к извлекаемым запасам нефти, выражается в %/год.

Если динамика темпа разработки характеризуется стадиями, то изменение темпа отбора жидкости во времени происходит следующим образом. На протяжении первой стадии отбор жидкости по большинству месторождений практически повторяет динамику темпа их разработки. Во второй стадии темп отбора жидкости по одним залежам остается постоянным  на уровне максимального, по другим — уменьшается, а по третьим — возрастает. Такие же тенденции в еще большей степени выражены в третьей и четвертой стадиях. Изменение темпа отбора жидкости зависит от водонефтяного фактора, расхода нагнетаемой в пласт воды, пластового давления и пластовой температуры.

Водонефтяной фактор — отношение текущих значений добычи воды к нефти на данный момент разработки месторождения, измеряется в . Этот параметр, показывающий, сколько объемов воды добыто на 1т полученной нефти, является косвенным показателем эффективности разработки и с третьей стадии разработки начинает быстро нарастать. Темп его увеличения зависит от темпа отбора жидкости. При разработке залежей маловязких нефтей в конечном итоге отношение объема добытой воды к добыче нефти достигает единицы, а для вязких нефтей увеличивается до 5 — 8 м3/т и в некоторых случаях достигает 20 м3/т.

Расход нагнетаемых в пласт веществ. При осуществлении различных технологий с целью воздействия на пласт используют различные агенты, улучшающие условия извлечения нефти из недр. Закачивают в пласт воду или пар, углеводородные газы или воздух, двуокись углерода и другие вещества. Темп закачки этих веществ и их общее количество, а также темп их извлечения на поверхность с продукцией скважин — важнейшие технологические показатели процесса разработки.

Пластовое давление. В процессе разработки давление в пластах, входящих в объект разработки, изменяется по сравнению с первоначальным. Причем на различных участках площади оно будет неодинаковым: вблизи нагнетательных скважин максимальным, а вблизи добывающих — минимальным. Для контроля за изменением пластового давления используют средневзвешенную по площади или объему пласта величину. Для определения средневзвешенных их значений используют карты изобар, построенные на различные моменты времени.

Важные показатели интенсивности гидродинамического воздействия на пласт — давления на забоях нагнетательных и добывающих скважин. По разнице между этими величинами определяют интенсивность потока жидкости в пласте.

Давление на устье добывающих скважин устанавливают и поддерживают исходя из требований обеспечения сбора и внутрипромыслового транспорта продукции скважин.

Пластовая температура. В процессе разработки этот параметр изменяется в результате дроссельных эффектов в призабойных зонах пласта, закачки в пласт теплоносителей, создания в нем движущегося фронта горения.

Статистика



Яндекс.Метрика