foto1
foto1
foto1
foto1
foto1

Добыча нефти и газа

Изучаем тонкости нефтегазового дела ВМЕСТЕ!

Отчет о практике специальности Разработка и эксплуатация нефтегазовых месторождений - Вскрытие и освоение нефтяного пласта

  3. Вскрытие и освоение нефтяного пласта

Бурение скважины заканчивается вскрытием нефтяного пласта, т.е. сообщением нефтяного пласта со скважиной. Этот этап является весьма ответственным по следующим причинам. Нефтегазовая смесь в пласте находится под большим давлением, величина которого может быть заранее неизвестной. 

При давлении, превышающем давление столба жидкости,  заполняющей скважину, может произойти выброс жидкости из ствола скважины и возникнет открытое фонтанирование;

- попадание промывочной жидкости (в большинстве случаев это глинистый раствор) в нефтяной пласт забивает его каналы, ухудшая приток нефти в скважину.

Избежать фонтанных выбросов можно, предусмотрев установку на устье специальных устройств, перекрывающих ствол скважины - превенторов, или, применив промывочную жидкость высокой плотности.

Предотвращение проникновения раствора в нефтяной пласт добиваются путем введения в раствор различных:  компонентов, по свойствам близким к пластовой жидкости,  например, эмульсий на нефтяной основе.

Поскольку после вскрытия нефтяного пласта бурением в   скважину спускают обсадную колонну и цементируют ее, тем  самым перекрывая и нефтяной пласт, возникает необходимость  в повторном вскрытии пласта.  Этого достигают посредством прострела колонны в   интервале пласта специальными перфораторами, имеющими заряды на пороховой основе. Они спускаются в скважину на кабель-канате геофизической службой.

В настоящее время освоены и применяют несколько методов перфорации скважин.

 

3.1.1. Пулевая перфорация

Пулевая перфорация скважин заключается. в спуске в скважину на кабель-канате специальных устройств - перфораторов, в корпус которых встроены пороховые заряды с пулями. Получая электрический импульс с поверхности, заряды взрываются, сообщая пулям высокую  скорость и большую пробивную силу. Она вызывает разрушение   металла   колонны   и цементного кольца.     Количество отверстий в колонне и их расположение по    толщине  пласта    заранее рассчитывается, поэтому иногда спускают гирлянду перфораторов.   Давление горящих газов в стволе-каморе может достигать 0.6...0.8 тыс. МПа, что обеспечивает               получение перфорационных отверстий диаметром до 20 мм и длиной 145...350 мм.

Пули     изготавливаются     из легированной стали и для уменьшения трения при движении по каморе покрываются  медью  или  свинцом. Применяют перфораторы типов ПБ-2, ПВН-90.

      3.1.2. Торпедная перфорация

Торпедная     перфорация     по принципу осуществления аналогична пулевой, только увеличен вес заряда. с 4...5 г. до 27 г. и в перфораторе  применены горизонтальные стволы. Диаметр отверстий - 22 мм, глубина - 100...160 мм, на 1 м толщины пласта выполняется до четырех отверстий.

      3.1.3. Кумулятивная перфорация

Кумулятивная перфорация - образование отверстий за счет направленного движения струи раскаленных вырывающихся из перфоратора со скоростью 6...8 км/с с давлением 0,15...0,3 млн.МПа. При этом образуется канал глубиной до 350 мм и диаметром 8...14 мм. Максимальная толщина пласта, вскрываемая кумулятивным перфоратором за спуск до 30 м, торпедным - до 1 м, пулевым до

2,5 м. Количество порохового заряда - до 50 г.

      3.1.4. Гидропескоструйная перфорация

Гидропескоструйная перфорация - образование отверстий в колонне за счет абразивного воздействия песчано-жидкостной смеси, вырывающейся со скоростью до 300 м/с из калиброванных сопел с давлением 15...30 МПа.

      Разработанный   во   ВНИИ   и освоенный серийно под шифром АП-6М, пескоструйный  аппарат хорошо зарекомендовал себя: глубина получаемых им каналов грушевидной формы может достигать 1,5 м.

      3.1.5. Сверлящая перфорация

Сверлящий перфоратор - устройство для образования фильтра посредством сверления отверстий. Для этой цели применяют разработанный во ВНИИГИСе (г.Октябрьский) сверлящий керноотборник, электропривод которого связан с алмазным сверлом. Максимальное радиальное составляет 60 мм, что обеспечивает по результатам практики прохождения обсадной колонны, вход в пласт на глубину не более 20 мм.

      Перфорация получила название «щадящей», так как исключает повреждение колонны и цементного кольца, которые неминуемы при взрывных методах. Сверлящая перфорация обладает высокой точностью образования фильтра в требуемом интервале.

      3.2. Освоение нефтяных скважин

      Освоением нефтяных скважин называется комплекс работ, проводимых после бурения, с целью вызова притока нефти из пласта в скважину.

      Дело в том, что в процессе вскрытия, как говорилось  ранее, возможно попадание в пласт бурового раствора, воды,  что засоряет поры пласта, оттесняет от скважины нефть.

      Поэтому не всегда возможен самопроизвольный приток нефти в скважину. В таких случаях прибегают к искусственному вызову   притока, заключающемуся   в проведении  специальных работ.

      3.2.1. Замена в стволе скважины жидкости большой плотности жидкость меньшей плотности

      Такой метод широко применяется и основан на известном факте: столб жидкости, имеющей большую плотность, оказывает на пласт большее противодавление. Стремление снизить противодавление  за счет вытеснения из ствола скважины, например, глинистого раствора плотностью Qг = 2000 кг/куб.м    пресной водой плотностью Qb = 1000 кг/куб.м ведет к уменьшению противодавления на пласт вдвое.

Способ прост, экономичен и эффективен при слабой засоренности пласта.

      3.2.2. Снижение давления на пласт компрессором

      Если замещение раствора водой не приносит результатов, прибегают к дальнейшему уменьшению плотности: в ствол подают сжатый компрессором воздух. При этом удается оттеснить столб жидкости до башмака насосно-компрессорных труб, уменьшив таким образом противодавление на пласт до значительных величин.

      В некоторых случаях может оказаться эффективным метод периодической подачи воздуха компрессором и жидкости насосным агрегатом, создавая последовательные воздушные порции. Количество таких порций газа может быть несколько, и они, расширяясь, выбрасывают жидкость из ствола.

      С целью повышения эффективности вытеснения по длине колонны насосно-компрессорных труб устанавливают пусковые клапана-отверстия, через которые сжатый воздух поступает внутрь НКТ сразу же при входе в скважину и начинает «работать» т.е. поднимать жидкость и в затрубном пространстве, и в НКТ.

      3.2.3. Свабирование

      Метод заключается в спуске в НКТ специального поршня-сваба, снабженного обратным клапаном (рис 2.15.). Перемещаясь вниз, поршень пропускает через себя жидкость, при подъеме вверх – клапан закрывается, и весь столб жидкости, оказавшийся над ним, вынужден подниматься вместе с поршнем, а затем и выбрасываться из скважины. Поскольку столб поднимаемой жидкости может быть большим (до 1000 м), снижение давления на пласт может оказаться значительным. Так, если скважина до устья заполнена жидкостью, а сваб может быть спущен на глубину 1000 м, то уменьшение давления произойдет на величину уменьшения столба жидкости в затрубном пространстве, откуда часть жидкости перетечет из НКТ.

      Процесс свабирования может быть повторен многократно, что позволяет снизить давление на пласт на очень большую величину.

      3.2.4. Имплозия

      Если в скважину опустить сосуд, заполненный воздухом под давлением, затем мгновенно сообщить этот сосуд со стволом скважины, то освободившийся воздух будет перемещаться из зоны высокого давления в зону низкого, увлекая за собой жидкость и создавая таким образом пониженное давление на пласт.

      Подобный эффект может быть вызван, если в скважину спустить предварительно опорожненные от жидкости насосно-компрессорные труды и мгновенно перепустить в них скважинную жидкость. При этом противодавление на пласт уменьшится и увеличится приток жидкости из пласта.

      Вызов притока сопровождается выносом из пласта принесенных туда механических примесей, т.е. очисткой пласта.

Статистика



Яндекс.Метрика