Перейти к содержимому
Главная страница » Фильтрация в неоднородных средах

Фильтрация в неоднородных средах

0
(0)

В продуктивных пластах в различных точках проницаемость неодинакова. При мелкомасштабном хаотичном изменении фильтрационных характеристик по пласту пласт считается в среднем однородно-проницаемым.

Пласт называется макронеоднородным, если его фильтрационные характеристики (проницаемость, пористость) значительно, скачкообразно отличаются в разных областях.

Различают следующие виды  макронеоднородности:

а) Слоистая неоднородность (многослойный пласт), т.е. неоднородность по толщине пласта. Предполагается, что пропластки разделены непроницаемыми границами – гидравлически изолированы либо учитываются перетоки между слоями различной проницаемости – гидравлически сообщающиеся; поток в каждом пропластке – прямолинейно-параллельный или плоскорадиальный; в пределах каждого пропластка фильтрационные параметры постоянны, а на границе соседних они претерпевают скачок.

Если течение потенциально, то полный дебит пласта определяется как сумма дебитов всех пропластков. При практических расчетах указанный многослойный пласт можно заменить квазиоднородным с эффективной проницаемостью

 ,                                                                          (3.58)

где ki , hi – проницаемость и эффективная толщина i-го пропластка, h- эффективная толщина всего пласта.

б) Зональная неоднородность – пласт по площади состоит из нескольких зон различных фильтрационных параметров, на границах которых данные параметры меняются скачкообразно.

Согласно уравнению неразрывности, массовый дебит постоянен и равен:

Ø при прямолинейно-параллельном потоке

;                                                                       (3.59)

Ø при плоскорадиальном потоке

,                                                               (3.60)

где В – ширина пласта; li , ri – протяженность i- й зоны или её внешний радиус (r0=rc); , i=1,…,n; n – число зон.

При замене зонально-неоднородного пласта – квазиоднородным следует использовать средние эффективные проницаемости:

Ø при прямолинейно-параллельном потоке

;                                                                           (3.61)

Ø при плоскорадиальном потоке

,                                                                    (3.62)

где L, Rк – расстояние от галереи до контура и радиус контура.

В практике важное значение имеет случай притока к скважине при наличии вокруг забоя кольцевой зоны с проницаемостью, отличной от проницаемости пласта (торпедирование или кислотная обработка, установка гравийного фильтра, глинизация или порофинизация призабойной зоны и т.д.). При данной задаче надо установить влияние различия проницаемостей кольцевой призабойной зоны и остальной части пласта на продуктивность скважины. С этой целью сравним дебит скважины в неоднородном пласте с двумя областями (n = 2 в формуле 3.60) проницаемости с дебитом скважины в однородном пласте (n = 1).

 Расчеты показывают:

1)  Недопустимость постановки прогноза на будущий дебит, исходя только из данных о проницаемости призабойной зоны пласта, а следует использовать квазиоднородное приближение (формула 3.62).

2)  Ухудшение проницаемости призабойной зоны сильнее влияет на дебит, чем увеличение проницаемости в этой зоне. Если произойдёт заметное ухудшение проницаемости даже в небольшой области пласта, примыкающей к скважине, то дебит скважины резко снизится.

3)  В случае фильтрации по закону Дарси увеличивать проницаемость призабойной зоны более, чем в 20 раз не имеет смысла, т.к. дальнейшее увеличение проницаемости практически не ведёт к росту дебита.

4)  Нарушение в пластовых условиях закона Дарси усиливает положительное влияние увеличенной проницаемости призабойной зоны на производительность скважины.

Насколько публикация полезна?

Нажмите на звезду, чтобы оценить!

Средняя оценка 0 / 5. Количество оценок: 0

Оценок пока нет. Поставьте оценку первым.